Solutions Quiz - ANSWER KEY

1. Which of the following explains why water is the universal solvent?
A. Water is a small molecule
B. Water has a polar structure
C. Water is made of nonmetals
D. None of the above

The one key point you needed to know was that water is polar. This is what gives water unique properties, and allows it to dissolve most solutes.
2. Which of the following compounds is likely to dissolve in water?
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. NaCl
C. Both A and B
D. $\mathrm{C}_{2} \mathrm{H}_{6}$

Because water is polar, it can dissolve other charged substances. Both ionic compounds and polar covalent compounds are charged, so both A and B can dissolve in water.
3. Which of the following are likely to dissolve in water?
I. BaCl_{2}
II. CH_{4}
III. OCl_{2}
IV. NH_{3}
A. I only
B. I and IV only
C. II and III only
D. I, II, and III only

This is just like \#2. Ionic compounds and polar covalent compounds can dissolve in water. "I" is ionic, "II" is nonpolar, "III" is nonpolar, and "IV" is polar covalent. Therefore, I and IV would dissolve in water.
4. For the following reaction, which products, if any, would form a precipitate in water?

$$
\mathrm{CaCO}_{3}+\mathrm{KOH} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{K}_{2} \mathrm{CO}_{3}
$$

A. $\mathrm{Ca}(\mathrm{OH})_{2}$
B. $\mathrm{K}_{2} \mathrm{CO}_{3}$
C. $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$
D. No precipitates would form

This problem requires you to use your solubility rules. Remember that precipitate $=$ insoluble. Also, you are looking at the products, so these are $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$.

OH is usually insoluble, but Ca is an exception. Therefore, $\mathrm{Ca}(\mathrm{OH})_{2}$ is soluble. CO_{3} is usually insoluble, unless it has an alkali metal. Since K is an alkali metal, $\mathrm{K}_{2} \mathrm{CO}_{3}$ is actually soluble.

Therefore, no precipitates would form.
5. Which of the following best explains why barium sulfate is insoluble?
A. It is an ionic compound
B. It is a covalent compound
C. All sulfates are insoluble
D. Sulfates are generally soluble, but Barium is a common exception

This problem requires solubility rules again. Barium is a metal, so barium sulfate cannot be a covalent compound (B is wrong). Sulfates are generally soluble (C is also wrong). However, barium is a common exception to this rule. This leaves us with D as the best answer.
6. Which of the following compounds are soluble?
I. $\mathrm{K}_{2} \mathrm{CO}_{3}$
II. $\mathrm{Ba}\left(\mathrm{ClO}_{2}\right)_{2}$
III. AgI
IV. CaS
A. I only
B. I and IV only
C. II and III only
D. I, II, and IV only

This requires our solubility rules again. For " I ", CO_{3} is generally insoluble, but since K is an alkali metal, $\mathrm{K}_{2} \mathrm{CO}_{3}$ is actually soluble. Therefore, our answer must have "I" in it (C is wrong). For "II", ClO_{2} is always soluble, no exceptions. Therefore, our answer must have "II" in it (A and B are wrong). This leaves us with D as the correct answer.
7. Which of the following solutions has the highest concentration of solute?
A. 1.5 mol solute in 0.300 L solvent
B. 3.0 mol solute in 0.600 L solvent
C. 0.5 mol solute in 0.05 L solvent
D. 5.0 mol solute in 5.0 L solvent

This is another way of asking molarity. The formula for molarity is $\mathrm{M}=\mathrm{n} / \mathrm{V}$, where M is molarity, n is number of moles, and V is the volume (in liters). Calculating the molarity for each choice, we find:

A: 5 M
B: 5M
C. 10 M

D: 1M

Therefore, the highest concentration is C .
8. In a solution of $2.44 \mathrm{~L}, 0.65$ moles of Sodium Chloride are dissolved. What is the molarity of the solution?
A. 0.27 M
B. 3.8 M
C. 1.6 M
D. 1.8 M

This is another molarity question. The formula is $M=n / V$. We are given n and V, so dividing them:

$$
M=\frac{n}{V}=\frac{0.65 \text { moles }}{2.44 L}=0.27 \mathrm{M}
$$

9. How many grams of $\mathrm{Ca}(\mathrm{CN})_{2}$ are dissolved in 1.75 L of a 0.770 M solution of $\mathrm{Ca}(\mathrm{CN})_{2}$?
A. $209 \mathrm{~g} \mathrm{Ca}(\mathrm{CN})_{2}$
B. $40.5 \mathrm{~g} \mathrm{Ca}(\mathrm{CN})_{2}$
C. $124 \mathrm{~g} \mathrm{Ca}(\mathrm{CN})_{2}$
D. $107 \mathrm{~g} \mathrm{Ca}(\mathrm{CN})_{2}$

This is a molarity, question, but it is a little more complicated. In the formula, $\mathrm{M}=\mathrm{n} / \mathrm{V}$, we are given M and V . Solving would give us n , but we are looking for grams, not moles.

$$
M=\frac{n}{V} \rightarrow n=M V=0.770 * 1.75=1.3475 \text { moles }
$$

The relationship between moles and grams is below:

$$
\text { Mass }(\text { in grams })=\text { moles } * \text { molar mass }
$$

We calculate the molar mass of $\mathrm{Ca}(\mathrm{CN})_{2}$ by adding up all the elements.
$\mathrm{Ca}(\mathrm{CN})_{2}=40.078+2(12.011)+2(14.007)=92.114 \mathrm{~g} / \mathrm{mol}$
Therefore:
Mass $($ in grams $)=1.3475 * 92.114=124 \mathrm{~g} \mathrm{Ca}(\mathrm{CN})_{2}$
10.Brandon has a 2.55 M solution of zinc (II) bromide. How many liters of the solution would contain 4.6 moles of zinc (II) chloride?
A. 1.8 L
B. 0.55 L
C. 12 L
D. 8.1 L

This is another molarity problem. In the formula, $M=n / V$, we are given M and n. Solving for V:

$$
M=\frac{n}{V} \rightarrow V=\frac{n}{M}=\frac{4.6 \text { moles }}{2.55 M}=1.8 L
$$

11.If a solution is diluted by tripling its volume with water, what will happen to the concentration?
A. It will increase by a factor of 5
B. It will triple
C. It will decrease by a third
D. It will decrease by a factor of 5

This is a problem testing your knowledge of dilutions. Diluting something always makes it less concentrated (A and B are wrong). The key word here is triple (which means 3x). If we triple the volume, then the concentration must decrease by a factor of 3 (D is wrong). Therefore, the answer is C.
12.A chemistry student dilutes 0.85 L of 3.6 M sodium chloride to prepare 5.0 L solution. What is the concentration of the new diluted solution?
A. 0.61 M
B. 6.1 M
C. 21 M
D. 10 M

This is a dilutions problem. $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$. We are given $\mathrm{M}_{1}, \mathrm{~V}_{1}$, and V_{2}, so we need to solve for M_{2}.

$$
\begin{gathered}
M_{1} V_{1}=M_{2} V_{2} \\
M_{2}=\frac{M_{1} V_{1}}{V_{2}}=\frac{3.6 * 0.85}{5.0}=0.61 \mathrm{M}
\end{gathered}
$$

13.A chemist has a contained of concentrated 15.0 M sodium hydroxide solution. If she wants to prepare 0.500 L of 1.5 M sodium hydroxide, how much of the concentrated solution will she need to use?
A. 5.0 L
B. 0.5 L
C. 0.05 L
D. 0.005 L

This is a dilutions problem. $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$. We are given $\mathrm{M}_{1}, \mathrm{M}_{2}$, and V_{2}, so we need to solve for V_{1}.

$$
\begin{gathered}
M_{1} V_{1}=M_{2} V_{2} \\
V_{1}=\frac{M_{2} V_{2}}{M_{1}}=\frac{1.5 * 0.500}{15.0}=0.05 \mathrm{~L}
\end{gathered}
$$

14. How much water must be added in order to dilute 0.6 L of 10.0 M HCl to a concentration of 5.0 M?
A. 1.2 L
B. 1.8 L
C. 0.6 L
D. 1.4 L

This is a dilutions problem. $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$. We are given $\mathrm{M}_{1}, \mathrm{~V}_{1}$, and M_{2}, so we need to solve for V_{2}.

$$
\begin{gathered}
M_{1} V_{1}=M_{2} V_{2} \\
V_{2}=\frac{M_{1} V_{1}}{M_{2}}=\frac{10.0 * 0.6}{5.0}=1.2 \mathrm{~L}
\end{gathered}
$$

However, the problem asks how much water needs to be added. Therefore, we need to subtract $\mathrm{V}_{2}-$ V_{1}.

$$
1.2 \mathrm{~L}-0.6 \mathrm{~L}=0.6 \mathrm{~L}
$$

15. Which of the following is an example of an electrolyte?
A. $\mathrm{BaCr}_{2} \mathrm{O}_{7}$
B. KOH
C. Both A and B
D. $\mathrm{H}_{2} \mathrm{CO}_{3}$

This problem requires you to know what an electrolyte is. All electrolytes are ionic compounds, which means that they have a metal. Both A and B have a metal (Ba and K).
16. What is true of all electrolytes?
A. They are solutions of ionic compounds
B. They contain metals
C. They conduct electricity
D. All of the above

This problem requires you to know the definition of an electrolyte. From \#15, we know that electrolytes are ionic compounds and that they contain metals. Since A and C are both correct, our answer must be D , all of the above (electrolytes also conduct electricity).

17.A chemistry student prepares a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ in 100 g water at $70^{\circ} \mathrm{C}$. She then rapidly cools the solution to $50^{\circ} \mathrm{C}$. Use the graph to estimate how much solute will likely precipitate:
A. About 20 g
B. About 10 g
C. About 15 g
D. About 30g

This problem requires you to read the graph. A saturated solution is one that is on the line. We first look at $\mathrm{NH}_{4} \mathrm{Cl}$ at $70^{\circ} \mathrm{C}$. This gives us 60 g . We then go to $50^{\circ} \mathrm{C}$ on the same curve, which gives us 50 g . Since the problem asks how much solute would precipitate (come out of solution), we do $60 \mathrm{~g}-$ $50 \mathrm{~g}=10 \mathrm{~g}$

Note that the 100 g is for water, not $\mathrm{NH}_{4} \mathrm{Cl}$. We don't actually use it in the problem
18.If 80 g of NaNO_{3} are dissolved in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $10^{\circ} \mathrm{C}$, what type of solution was made?
A. Saturated
B. Unsaturated
C. Supersaturated
D. Semi-Saturated

This problem requires us to read the graph again. At $10^{\circ} \mathrm{C}$, a saturated solution of NaNO_{3} would have $\sim 80 \mathrm{~g}$. Since we dissolved exactly 80 g , our solution must be saturated.

