Unit 6 Review

1. How many atoms are in 0.711 moles of Helium?

- 2. What is the molar mass of Barium Fluoride?
- 3. What is the percent composition by mass of the elements in $AgNO_3$?

4. What is the empirical formula for a compound that is 57.14% C, 6.16% H, 9.52% N, and 27.18% O?

5. What is the molecular formula for a compound with an empirical formula of C_4H_4O and a molar mass of 136 g/mol?

6. Balance the following equation:

 $\underline{\qquad} Na_3PO_4 + \underline{\qquad} KOH \rightarrow \underline{\qquad} NaOH + \underline{\qquad} K_3PO_4$

- 7. What is the name for $CdSO_4$?
- 8. How many chlorate ions are in 3.62 moles of Calcium Chlorate?

9. How many molecules are in 4.60 moles of Sulfur Trioxide gas?

- 10.A 0.41g sample of a compound containing Carbon, Nitrogen, and Oxygen was burned. The sample contained 0.13g of Oxygen. What is the percentage of Oxygen in this compound?
- 11. What is the empirical formula for a compound that is 67.1% Zinc and 32.9% Oxygen?

12. What is the molecular formula for a compound with an empirical formula of C_2OH_4 and a molar mass of 88 g/mol?

13. What is the missing reactant when the following equation is balanced?

$$\underline{1} \operatorname{GaF}_3 + \underline{3} \operatorname{Cs} \rightarrow 3 \underline{\qquad} + \underline{1} \operatorname{Ga}$$

- 14. What is the chemical formula for Carbonic Acid?
- 15. How many moles are in 5.91 x 10^{27} atoms of Xenon?
- 16. How many moles are in 6.19×10^{34} molecules of Diphosphorus Nonanitride?
- 17. What is the percent composition by mass of the elements in Aluminum Nitrate?
- 18. What is the empirical formula for a compound that is 44.82% Potassium, 18.39% Sulfur, and 36.79% Oxygen?

19. What is the molecular formula for a compound with an empirical formula of C_2H_8N and a molar mass of 46 g/mol?

20. What is the coefficient for Calcium Carbonate when the following equation is balanced?

 $\underline{Ca(OH)_2} + \underline{CO_2} \rightarrow \underline{CaCO_3} + \underline{H_2O}$

21. What is the molar mass of Lithium Perchlorate?

Problem Solutions:

1. 4.28×10^{23} atoms

Moles \rightarrow atoms (single element)

0.711 moles x $\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mole}} = 4.28 \times 10^{23} \text{ atoms}$

2. 175.324 g/mol

Barium Fluoride = BaF_2

Molar mass = 1(137.328) + 2(18.998) = 175.324 g/mol

3. 63.5% Ag, 8.2% N, 28.3% O

Molar mass = 1(107.868) + 1(14.007) + 3(15.999) = 169.872 g/mol

% Ag =
$$\frac{107.868}{169.872}$$
 x 100% = 63.5%
% N = $\frac{14.007}{169.872}$ x 100% = 8.2%

$$\% 0 = \frac{3(15.999)}{169.872} \times 100\% = 28.3\%$$

4. $C_{14}H_{18}N_2O_5$

4. $C_{14}\Pi_{18}N_2O_5$				
Step 1: Convert	C = 57.14g	H = 6.16g	N = 9.52g	O = 27.18g
percent to grams				
Step 2: Convert	c – ^{57.14}	$H = \frac{6.16}{1.008}$	9.52	$0 = \frac{27.18}{15.999}$
grams to moles	$C = \frac{11}{12.011}$	$H = \frac{1.008}{1.008}$	$N = \frac{1100}{14.007}$	$0 = \frac{15.999}{15.999}$
	= 4.76 moles	= 6.11 moles	= 0.68 moles	= 1.70 moles
Step 3: Divide by	$C = \frac{4.76}{0.68}$	$H = \frac{6.11}{0.68}$	0.68	$O = \frac{1.70}{0.68}$
the smallest	$c = \frac{1}{0.68}$	$n = \frac{1}{0.68}$	$N = \frac{0.68}{0.68}$	$0 = \frac{1}{0.68}$
number of moles				
to get the mole	= 7	= 9	= 1	= 2.5
ratios				
Step 4: Multiply				
subscripts (if	7 x 2 = 14	9 x 2 = 18	$1 \ge 2$	$2.5 \ge 2 = 5$
necessary) to				
make whole				
numbers				
Formula:	$C_{14}H_{18}N_2O_5$			

5. $C_8H_8O_2$

Mass of Empirical Formula = 4(12.011) + 4(1.008) + 1(15.999) = 68.075 g/mol

$$\frac{136}{68.075} \approx 2 \ (C_4 H_4 O) = C_8 H_8 O_2$$

- 6. $\underline{1}$ Na₃PO₄ + $\underline{3}$ KOH $\rightarrow \underline{3}$ NaOH + $\underline{1}$ K₃PO₄
- 7. Cadmium (II) Sulfate
- 8. 4.36×10^{24} Chlorate ions

Moles \rightarrow Formula Units \rightarrow ions

Calcium Chlorate = $Ca(ClO_3)_2$

3.62 moles x
$$\frac{6.02 \times 10^{23} \text{ formula units}}{1 \text{ mole}} \times \frac{2 \text{ chlorate ions}}{1 \text{ formula unit}}$$

= 4.36 x 10²⁴ ions

9. 2.77 x 10^{24} molecules

Moles \rightarrow molecules

4.60 moles x $\frac{6.02 \times 10^{23} \text{ molecules}}{1 \text{ mole}} = 2.77 \times 10^{24} \text{ molecules}$

10.32% O

$$\% 0 = \frac{0.13}{0.41} \times 100\% = 32\%$$

 $11.ZnO_2$

Step 1: Convert percent to	Zn = 67.1g	O = 32.9g	
grams			
Step 2: Convert grams to moles	$Zn = \frac{67.1}{65.38}$	$0 = \frac{32.9}{15.999}$	
	= 1.03 moles	= 2.06 moles	
Step 3: Divide by the smallest number of moles to get the mole ratios	$Zn = \frac{1.03}{1.03}$	$O = \frac{2.06}{1.03}$	
	= 1	= 2	
Step 4: Multiply subscripts (if necessary) to make whole numbers	N/A	N/A	
Formula:	ZnO_2		

 $12.C_4O_2H_8$

Mass of Empirical Formula = 2(12.011) + 1(15.999) + 4(1.008) = 44.053 g/mol

 $\frac{88}{44.053} \approx 2 (C_2 O H_4) = C_4 O_2 H_8$

 $13.\underline{1}\text{GaF}_3 + \underline{3}\text{Cs} \rightarrow \underline{3}\text{CsF} + \underline{1}\text{Ga}$

Missing part is 3 CsF

14. H₂CO₃

15.9820 moles

Atoms (single element) \rightarrow moles

 $5.91 \ge 10^{27}$ atoms $\ge \frac{1 \text{ mole}}{6.02 \ge 10^{23} \text{ atoms}} = 9820 \text{ moles}$

Molecules \rightarrow moles

 $6.19 \ge 10^{34}$ molecules $\ge \frac{1 \text{ mole}}{6.02 \ge 10^{23} \text{ molecules}} = 1.03 \ge 10^{11}$ moles

17.12.7% Al, 19.7% N, 67.6% O

Aluminum Nitrate = $Al(NO_3)_3$

Molar mass = 1(26.982) + 3(14.007) + 9(15.999) = 212.994 g/mol

% Al =
$$\frac{26.982}{212.994}$$
 x 100% = 12.7%
% N = $\frac{3(14.007)}{212.994}$ x 100% = 19.7%
% O = $\frac{9(15.999)}{212.994}$ x 100% = 67.6%

 $18.K_2SO_4$

Step 1: Convert percent	K = 44.82g	S = 18.39g	O = 36.79g	
to grams				
Step 2: Convert grams	44.82	18.39	36.79	
to moles	$K = \frac{44.82}{39.098}$	$S = \frac{18.39}{32.066}$	$0 = \frac{36.79}{15.999}$	
	= 1.146 moles	= 0.574 moles	= 2.300 moles	
Step 3: Divide by the	<i>v</i> 1.146	$S = \frac{0.574}{0.574}$	$O = \frac{2.300}{0.574}$	
smallest number of	$K = \frac{1.210}{0.574}$	$S = \frac{1}{0.574}$	$0 = \frac{1}{0.574}$	
moles to get the mole				
ratios	= 2	= 1	= 4	
Step 4: Multiply				
subscripts (if	N/A	N/A	N/A	
necessary) to make				
whole numbers				
Formula:	K_2SO_4			

Mass of Empirical Formula = 2(12.011) + 8(1.008) + 1(14.007) = 46.093 g/mol

$$\frac{46}{46.093} \approx 1 \,(C_2 O H_4) = C_2 H_8 N$$

 $20.\underline{1}Ca(OH)_2 + \underline{1}CO_2 \rightarrow \underline{1}CaCO_3 + \underline{1}H_2O$

Coefficient for Calcium Carbonate (CaCO₃) is 1

21.106.390 g/mol

Lithium Perchlorate = $LiClO_4$

Molar mass = 1(6.941) + 1(35.453) + 4(15.999) = 106.390 g/mol