Stoichiometry Review

1. Use the reaction below to answer the following questions:

$$
\mathrm{Na}_{2} \mathrm{SiO}_{3}+8 \mathrm{HF} \rightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}+2 \mathrm{NaF}+3 \mathrm{H}_{2} \mathrm{O}
$$

a. How many moles of hydrofluoric acid are needed to react with 0.300 moles of $\mathrm{Na}_{2} \mathrm{SiO}_{3}$?
b. How many grams of sodium fluoride are produced when 0.500 moles of hydrofluoric acid reacts with excess $\mathrm{Na}_{2} \mathrm{SiO}_{3}$?
c. How many grams of $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ are required to react with 80.4 grams of hydrofluoric acid?
d. At STP, how many liters of water vapor are produced from the reaction of 5.77 moles of hydrofluoric acid?
2. When glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is burned in oxygen, carbon dioxide and water are produced:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

a. How many moles of water are produced when 0.450 moles of glucose are burned?
b. If 284.7 grams of glucose are burned, how many moles of carbon dioxide are formed?
c. How many grams of glucose are required to react with 43.8 grams of oxygen gas?
d. If 124 L of carbon dioxide are produced, how many moles of oxygen gas reacted?
3. Use the reaction below to answer the following questions:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

a. Calculate the number of moles of carbon monoxide required to produce 9.4 moles of iron.
b. If 2.44 moles of carbon monoxide react, how many grams of carbon dioxide are produced?
c. How many grams of iron (III) oxide are required to produce 72.1 grams of iron?
d. If 15.22 moles of iron (III) oxide reacted, how many liters of carbon dioxide were produced? Assume STP.
e. If 133 L of carbon monoxide were consumed, how many liters of carbon dioxide were produced? Assume STP
4. Use the reaction below to answer the following questions:

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}
$$

a. How many moles of bromine are required to react with 3.11 moles of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$?
b. If 61.92 grams of benzene are consumed, how many moles of hydrobromic acid are formed?
c. How many grams of bromobenzene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}\right)$ are produced from the reaction of 117.83 grams of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$?
d. If 124 L of bromine gas are consumed, how many grams of hydrobromic acid are produced?

Solutions:

1. Reaction for this problem is:

$$
\mathrm{Na}_{2} \mathrm{SiO}_{3}+8 \mathrm{HF} \rightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}+2 \mathrm{NaF}+3 \mathrm{H}_{2} \mathrm{O}
$$

a. This is a moles to moles problem, so only one step is required:

Moles $\mathrm{Na}_{2} \mathrm{SiO}_{3} \rightarrow$ Moles HF

$$
0.300 \text { moles } \mathrm{Na}_{2} \mathrm{SiO}_{3} \times \frac{8 \text { moles } \mathrm{HF}}{1 \mathrm{~mole} \mathrm{Na}_{2} \mathrm{SiO}_{3}}=2.40 \text { moles } \mathrm{HF}
$$

b. This is a moles to grams problem, so two steps are required:

Moles HF \rightarrow Moles NaF \rightarrow Grams NaF
Molar mass of $\mathrm{NaF}=1(22.99)+1(18.998)=41.998 \mathrm{~g} / \mathrm{mol}$

$$
0.500 \text { moles } \mathrm{HF} \mathrm{x} \frac{2 \text { moles } \mathrm{NaF}}{8 \mathrm{~mole} \mathrm{HF}} \times \frac{41.988 \mathrm{~g} \mathrm{NaF}}{1 \mathrm{~mole} \mathrm{NaF}}=5.25 \mathrm{~g} \mathrm{NaF}
$$

c. This is a grams to grams problem, so three steps are required

Grams HF \rightarrow Moles HF \rightarrow Moles $\mathrm{Na}_{2} \mathrm{SiO}_{3} \rightarrow$ Grams $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
Molar mass of $\mathrm{HF}=1(1.008)+1(18.998)=20.006 \mathrm{~g} / \mathrm{mol}$
Molar mass of $\mathrm{Na}_{2} \mathrm{SiO}_{3}=2(22.99)+1(28.086)+3(15.999)=122.063 \mathrm{~g} / \mathrm{mol}$
$80.4 \mathrm{~g} \mathrm{HF} \times \frac{1 \text { mole } \mathrm{HF}}{20.006 \mathrm{~g} \mathrm{HF}} \times \frac{1 \mathrm{~mole} \mathrm{Na}_{2} \mathrm{SiO}_{3}}{8 \mathrm{moles} \mathrm{HF}} \times \frac{122.063 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SiO}_{3}}{1 \mathrm{~mole} \mathrm{Na}_{2} \mathrm{SiO}_{3}}=61.3 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SiO}_{3}$
d. This is a moles to volume problem, so two steps are required:

Moles HF \rightarrow Moles $\mathrm{H}_{2} \mathrm{O} \rightarrow$ Volume $\mathrm{H}_{2} \mathrm{O}$
5.77 moles HF x $\frac{3 \text { moles } \mathrm{H}_{2} \mathrm{O}}{8 \text { moles } \mathrm{HF}} \times \frac{22.4 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}}{1{\text { mole } \mathrm{H}_{2} \mathrm{O}}}=48.5 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
2. Reaction for this problem is:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

a. This is a moles to moles problem, so only one step is required:

Moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow$ Moles $\mathrm{H}_{2} \mathrm{O}$

$$
0.450 \text { moles } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{6 \text { moles } \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=2.70 \text { moles } \mathrm{H}_{2} \mathrm{O}
$$

b. This is a grams to moles problem, so two steps are required:

Grams $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{6} \rightarrow$ Moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow$ Moles CO_{2}
Molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6(12.011)+12(1.008)+6(15.999)=180.156 \mathrm{~g} / \mathrm{mol}$
284.7 $\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \text { moles } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.156 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{6 \text { moles } \mathrm{CO}_{2}}{1 \text { mole } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=9.482$ moles CO_{2}
c. This is a grams to grams problem, so three steps are required

Grams $\mathrm{O}_{2} \rightarrow$ Moles $\mathrm{O}_{2} \rightarrow$ Moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow$ Grams $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Molar mass of $\mathrm{O}_{2}=2(15.999)=31.998 \mathrm{~g} / \mathrm{mol}$
Molar mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6(12.011)+12(1.008)+6(15.999)=180.156 \mathrm{~g} / \mathrm{mol}$

d. This is a volume to moles problem, so two steps are required:

Volume $\mathrm{CO}_{2} \rightarrow$ Moles $\mathrm{CO}_{2} \rightarrow$ Moles O_{2}

$$
124 \mathrm{LCO}_{2} \times \frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{22.4 \mathrm{~L} \mathrm{CO}_{2}} \times \frac{9 \text { moles } \mathrm{O}_{2}}{6 \text { moles } \mathrm{CO}_{2}}=8.30 \text { moles } \mathrm{O}_{2}
$$

3. Reaction for this problem is:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

a. This is a moles to moles problem, so only one step is required:

Moles $\mathrm{Fe} \rightarrow$ Moles CO

$$
9.4 \text { moles } \mathrm{Fe} x \frac{3 \text { moles } \mathrm{CO}}{1 \text { mole } \mathrm{Fe}}=28 \text { moles } \mathrm{CO}
$$

b. This is a moles to grams problem, so two steps are required:

Moles $\mathrm{CO} \rightarrow$ Moles $\mathrm{CO}_{2} \rightarrow$ Grams CO_{2}

Molar mass of $\mathrm{CO}_{2}=1(12.011)+2(15.999)=44.009 \mathrm{~g} / \mathrm{mol}$

$$
2.44 \text { moles } \mathrm{CO} \times \frac{3 \mathrm{moles} \mathrm{CO}_{2}}{3 \text { moles } \mathrm{CO}} \times \frac{44.009 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{CO}_{2}}=107 \mathrm{~g} \mathrm{CO}_{2}
$$

c. This is a grams to grams problem, so three steps are required

Grams $\mathrm{Fe} \rightarrow$ Moles $\mathrm{Fe} \rightarrow$ Moles $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ Grams $\mathrm{Fe}_{2} \mathrm{O}_{3}$
Molar mass of $\mathrm{Fe}=1(55.845)=55.845 \mathrm{~g} / \mathrm{mol}$
Molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=2(55.845)+3(15.999)=159.687 \mathrm{~g} / \mathrm{mol}$
72.1g Fe $\times \frac{1 \text { mole } \mathrm{Fe}}{55.845 \mathrm{~g} \mathrm{Fe}} \times \frac{1 \text { mole } \mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \text { moles } \mathrm{Fe}} \times \frac{159.687 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}}{1 \text { mole } \mathrm{Fe}_{2} \mathrm{O}_{3}}=103 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
d. This is a moles to volume problem, so two steps are required:

Moles $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ Moles $\mathrm{CO}_{2} \rightarrow$ Volume CO_{2}
15.22 moles $\mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{3 \text { moles } \mathrm{CO}_{2}}{1 \text { mole } \mathrm{Fe}_{2} \mathrm{O}_{3}} \times \frac{22.4 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{CO}_{2}}=1023 \mathrm{~L} \mathrm{CO}_{2}$
e. This is a volume to volume problem, so three steps are required:

Volume $\mathrm{CO} \rightarrow$ Moles $\mathrm{CO} \rightarrow$ Moles $\mathrm{CO}_{2} \rightarrow$ Volume CO_{2}

$$
\text { 133L CO } x \frac{1 \text { mole CO }}{22.4 \mathrm{~L} \mathrm{CO}} \times \frac{3 \text { moles } \mathrm{CO}_{2}}{3 \text { mole CO }} \times \frac{22.4 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{CO}_{2}}=133 \mathrm{~L} \mathrm{CO}_{2}
$$

4. Reaction for this problem is:

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}
$$

a. This is a moles to moles problem, so only one step is required:

Moles $\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow$ Moles Br_{2}

$$
3.11 \text { moles } \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{1 \text { mole } \mathrm{Br}_{2}}{1 \mathrm{~mole}_{6} \mathrm{H}_{6}}=3.11 \text { moles } \mathrm{Br}_{2}
$$

b. This is a grams to moles problem, so two steps are required:

Grams $\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow$ Moles $\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow$ Moles HBr
Molar mass of $\mathrm{C}_{6} \mathrm{H}_{6}=6(12.011)+6(1.008)=78.114 \mathrm{~g} / \mathrm{mol}$

$$
61.92 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{6}}{78.114 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{1 \text { mole } \mathrm{HBr}}{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{6}}=0.7927 \text { moles } \mathrm{HBr}
$$

c. This is a grams to grams problem, so three steps are required

$$
\begin{gathered}
\text { Grams } \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \text { Moles } \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \text { Moles } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br} \rightarrow \text { Grams } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br} \\
\text { Molar mass of } \mathrm{C}_{6} \mathrm{H}_{6}=6(12.011)+6(1.008)=78.114 \mathrm{~g} / \mathrm{mol} \\
\text { Molar mass of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}=6(12.011)+5(1.008)+1(79.904)=157.01 \mathrm{~g} / \mathrm{mol} \\
117.83 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{1 \mathrm{~mole}_{6} \mathrm{H}_{6}}{78.114 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}} \times \frac{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}}{1 \mathrm{~mole}_{6} \mathrm{H}_{6}} \times \frac{157.01 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}}{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}}=236.84
\end{gathered}
$$

d. This is a volume to grams problem, so three steps are required:

Volume $\mathrm{Br}_{2} \rightarrow$ Moles $\mathrm{Br}_{2} \rightarrow$ Moles $\mathrm{HBr} \rightarrow$ Grams HBr

$$
124 \mathrm{LBr}_{2} \times \frac{1 \text { mole } \mathrm{Br}_{2}}{22.4 \mathrm{~L} \mathrm{Br}_{2}} \times \frac{1 \text { mole } \mathrm{HBr}}{1 \mathrm{~mole} \mathrm{Br}_{2}} \times \frac{80.912 \mathrm{~g} \mathrm{HBr}}{1 \text { mole } \mathrm{HBr}}=448 \text { grams } \mathrm{HBr}
$$

