Molar Calculations Quiz - KEY

^{1.} How many moles are in 5.12×10^{22} molecules of Sulfur Hexafluoride?

A. 3.08 x 10⁴⁶ moles B. 0.085 moles C. 0.1 moles D. 3.1 x 10⁴⁶ moles

^{2.} How many Lithium ions are in 3.11 moles of Lithium Carbonate, Li₂CO₃?

A. 1.87 x 10²⁴ ions B. 3.74 x 10²⁴ ions C. 5.62 x 10²⁴ ions D. 1.54 x 10⁻²³ ions

^{3.} What is the percent composition by mass of the elements in Calcium Chloride?

A. 36.1% Ca, 63.9% Cl B. 36.1% Cl, 63.9% Ca C. 53.1% Ca, 46.9% Cl D. 53.1% Cl, 46.9% Ca

^{4.} What is the empirical formula of a compound containing 39.9% C, 6.7% H, and 53.4% O?

A. $C_{3}H_{6}O_{3}$ B. $C_{2}HO$ C. $C_{10}H_{20}O_{10}$ D. $CH_{2}O$

^{5.} What is the empirical formula of a compound containing 65.2% Sc, 34.8% O?

A. Sc_3O_2 B. Sc_2O_3 C. ScO_2 D. Sc_2O

Solutions:

1. 0.085 moles

Molecules \rightarrow moles

 5.12×10^{22} molecules x $\frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ molecules}} = 0.085$ moles

Don't forget significant figures!! 0.1 is a correct answer, but with the wrong number of significant figures.

2. 3.74×10^{24} Chlorate ions

Moles \rightarrow Formula Units \rightarrow ions

3.11 moles x $\frac{6.02 \times 10^{23} \text{ formula units}}{1 \text{ mole}} \times \frac{2 \text{ Lithium ions}}{1 \text{ formula unit}}$ = 3.74 x 10²⁴ ions

A common mistake in this problem was forgetting the last conversion to ions. Also, keep in mind that while there are 3 ions in total, the problem asks only for the Lithium Ions.

3. 36.1% Ca, 63.9% Cl

Calcium Chloride = $CaCl_2$

Many of you only thought of it as CaCl. Make sure you balance charges with the criss-cross rule!

Molar mass = 1(40.078) + 2(35.453) = 110.984 g/mol

% Ca =
$$\frac{40.078}{110.984}$$
 x 100% = 36.1%
% Cl = $\frac{2(35.453)}{110.984}$ x 100% = 63.9%

4. CH₂O

The first thing to notice is that an empirical formula is a simplified formula. In your answer choices, A and C are not simplified, so they cannot be correct.

Step 1: Convert	C = 39.9g	H = 6.7g	O = 53.4g
percent to grams			
Step 2: Convert	39.9	6.7	53.4
grams to moles	$c = \frac{12.011}{12.011}$	$H = \frac{1}{1.008}$	$0 = \frac{15.999}{15.999}$
	= 3.32 moles	= 6.62 moles	= 3.34 moles
Step 3: Divide by	$c = \frac{3.32}{2}$	6.62	$a = \frac{3.34}{2}$
the smallest	$c = \frac{1}{3.32}$	$H = \frac{1}{3.32}$	$0 = \frac{1}{3.32}$
number of moles			
to get the mole	= 1	= 2	= 1
ratios			

This gives us a formula of CH₂O

5. Sc_2O_3

Chan 1. Conserve a conserve to	Ω_{-} (5.2)	0 24.9-
Step 1: Convert percent to	Sc = 65.2g	O = 34.8g
grams		
Step 2: Convert grams to	65.2	34.8
	$Sc = \frac{1}{1 + c + c}$	$0 = \frac{1}{10000}$
moles	44.956	15.999
	= 1.45 moles	= 2.17 moles
Step 3: Divide by the smallest	1.45	2.17
number of moles to get the	$Sc = \frac{1}{1 + 1}$	$0 = \frac{1}{1 + 1}$
number of moles to get the	1.45	1.45
mole ratios		
	= 1	= 1.5
Step 4: Multiply subscripts (if		
necessary) to make whole	$1 \ge 2 = 2$	$1.5 \times 2 = 3$
		$1.5 \times 2 = 5$
numbers		

This gives us a formula of Sc_2O_3